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Abstrad-A new approach to the solution of finite plane-strain problems for compressible isotropic elastic
solids is considered. The general problem is formulated in terms of a pair of deformation invariants different
from those normally used, enabling the components of (nominal) stress to be expressed in terms of four
functions, two of which are rotations associated with the deformation. Moreover. the inverse constitutive law
can be written in asimple form involving the same two rotations, and this allows the problem to be formulated
in a dual fashion.

For particular choices of strain·energy function of the elastic material solutions are found in which the
governing differential equations partially decouple, and the theory is then illustrated by simple examples. It is
also shown how this part of the analysis is related to the work of F. John on harmonic materials.

Detailed consideration is given to the problem of a circular cylindrical annulus whose inner surface is
fixed and whose outer surface is subjected to a circular shear stress. We note, in particular, that material
circles concentric with the annulus and near its surface decrease in radius whatever the form of constitutive
law within the given class. Whether the volume of the material constituting the annulus increases or decreases
depends on the form of law and the magnitude of the applied shear stress.

1. INTRODUCTION

This paper describes an attempt to obtain direct solutions of boundary-value problems in
plane-strain finite elasticity, that is direct in the sense that no assumption is made ab initio about
the form of the deformation or stress (except that attention is restricted to plane-strain). This
distinguishes the present approach from that adopted in the inverse or semi-inverse methods
described in, for example, Truesdell and NolI[l] and Green and Adkins[2]. Here, only isotropic
elastic materials are considered and, initially, no restriction is put on the form of the constitutive
law employed. More specifically, we deal with compressible materials, our intention in part being
to analyse the effect of allowing volume changes.

The majority of work in finite elasticity adopts the simplifying assumption of incompressibil
ity, and very few non-trivial analytical solutions to boundary-value problems for compressible
materials have been found. Of course, numerical solutions are obtainable (in principle, for any
form of constitutive law) as evidenced by the book of Oden[3]. This work is very valuable, but its
objectives are somewhat different from ours. We attempt to gain insight into some of the
fundamental problems in finite elasticity by introducing certain analytical techniques appropriate
to the discussion of compressible materials (similar techniques can be adopted for incompressible
materials), going as far as possible towards obtaining analytical solutions of specific
boundary-value problems. We use numerical results ultimately, but for purposes of illustration
only. The two approaches are complementary.

Let X and x respectively denote the position vectors of a typical material point in the
undeformed and deformed configurations of the material, the undeformed configuration being
assumed stress free. Rectangular Cartesian coordinates are used throughout and the components
of X and x are denoted by X.. (p. ;;:;: 1,2,3) and x/(i ;;:;: 1, 2, 3).

Since attention is to be restricted to plane strain we write Xl;;:;: Xl, it being convenient to
assume that there is no uniform strain in the third direction (although there is no difficulty in
incorporating such a strain if required). Also XI and X2 depend only on XI and X2•

The plane part of the deformation gradient axdax.. (i, JL ;;:;: 1 or 2) is denoted by

in symbolic notation.
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1- I( 2 2 + 2 2 ) }=zall+aI2 a21+ a 22,

J - a lIa22 - a l2a21
(1)

are those commonly employed in problems of isotropic elasticity theory, being essentially the
principal invariants of the Green deformation measure. In the present paper, however, it will be
found advantageous to use different invariants, denoted p and q and defined by

p = {2(I + J)}'/2 = (all + (22)2 +(al2 - a 2In" \}

q = {2(I - J)}1/2 ={(all - a22f + (al2 + (21)2}1I2,
(2)

where p >0 and q ~O.

Let p be the inverse of aT, where a T is the transpose of a. We note, in particular, that

(3)

In Section 2 the elastic stress-deformation relation is expressed in terms of the invariants p
and q and two rotation angles. The components of (nominal) stress are then written in terms of
four functions, denoted A, B, C and D, which are related through four first-order partial
differential equations, namely the equilibrium equations and compatibility conditions. This
approach requires that the stress-deformation relation be invertible in a sense to be described.
The dual problem, in which the components of the deformation gradient are expressed in terms of
four functions, is formulated in an analogous manner in Section 3.

Choices of the functions A, B, C and D may be made so that the governing equations partially
decouple, the resulting equations necessarily putting restrictions on the class of constitutive laws
that can then be admitted. For example, A, B, C and D may be chosen to be harmonic functions.
The resulting constitutive laws include those of the class of so-called harmonic materials
discussed by John [4]. The method used by John differs from that presented here, being in a sense
less general while for harmonic materials it is more general. These materials are
discussed in Sections 4 and 5. Inevitably, in making assumptions about A, B, C and D questions
of existence of solutions to particular boundary-value problems are raised, and this is taken into
account.

In Section 6 the solution obtained by the present approach is given for a simple mixed
boundary-value problem and compared with the corresponding solution in the linear theory. For
a specific form of constitutive law detailed calculations have been performed and these are
discussed in Section 7.

2. CONSTITUTIVE RELATIONS AND GOVERNING EQUATIONS

We consider elastic solids which possess a stored-energy function W per unit volume in the
undeformed configuration. Since attention is being restricted to plane strain W can be regarded
as a function of a, and W(a) is the strain energy per unit area in the undeformed configuration of
the (1, 2)-plane, and per unit length in the X 3-direction.

Let

denote the in-plane components of the nominal stress (the transpose of the first Piola-Kirchhoff
stress). Then

aw aW .
S= -, S",i =--(I,J-t = I or 2),

aa aai",
(4)
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and the only other non·zero component of stress is S33, required to maintain the plane-strain
condition X3 = X3•

In plane strain the equilibrium equations are

S 11,1 +S21.2 = O,}
S12,1 + S22.2 = 0,

when there are no body forces, and the compatibility equations are

a 11.2 - a 12.1 = O,}
a21.2 - a22.1 = 0,

(5)

(6)

where '.. denotes a/ax.. (p, = 1,2).
For the isotropic elastic solids (that is isotropic relative to the stress free configuration) to

which this paper is devoted W can be expressed as a function only of two independent invariants
of a (provided the material is homogeneous). For example, when W is regarded as a function of
the invariants I and J given by (1), (4) becomes

where WI = ow/aI, WJ = ow/aJ.
Incidentally, with the help of (3), the universal relations

a12-a21 S21-S12 all-an SII-S22
all+an SII+Sn'aI2+a21 S12+S21

are easily established from (7) provided

From (2) we obtain

op =ap =all +a22 ap =_ ap =at:~-a2l)
oall oa22 p' oal2 aa21 p'
oq oq all-a22 oq aq al~+a21

oall = - oan = q , iJal2 = iJa21 = q ,

and we note that. (9) is equivalent to

When W is expressed as a function of the invariants p and q (4) can be written as

(
SII S12) = If: (~oSX -sin X) + If:(C?SX* sinx*)
821 8n P smx cos X 4 smx* -COSX* '

where

all +an. aI2-a2l)cos X = ,smX= ,p p

* all- an. * a12+ a21cos X = , sm X = .q q

The rotation

(
COSX Sin x)

-sinX cosx

(7)

(8)

(9)

(10)

(11)

(12)

(13)
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is in fact the local rotational part of the deformation, as may be demonstrated by showing, with
the help of (13), that

-sin x)
cos X

(14)

is symmetric (by the polar decomposition theorem).
The angle X* does not have such an immediate physical interpretation, but it is related to X by

(15)

where (JE (0 :s; (JE :S;!1T) is the orientation of the principal axes of the Eulerian strain ellipsoid, that
is the principal axes of (14). In the case of circular symmetry, for example, X =0, (JE =8 and
X* = 28, where (J is the polar angle. And in simple shear X* = !1T.

At this point it is important to note that the stress-strain law of an elastic material having a
strain-energy function can also be written as

aw
T=~, (16)

where u is the (positive definite and symmetric) right stretch matrix such that a T x a = uZ
,

recalling the definition of a in plane strain. The symbol x denotes the usual matrix product. If we
use the polar decomposition theorem to write a = r x u, where r is proper orthogonal, then, for
isotropic elastic solids, T = S x r. For our purposes (16) may be taken as the definition of the
(symmetric) Biot stress T, the conjugate of u. This particular stress measure plays a central role in
considerations relating to the invertibility of the stress-strain law (4), as has been discussed in
some detail by Ogden [5].

Let Al and Az denote the principal stretches, that is the principal components of u. Then, if T,

and Tz are the principal components of T in plane-strain, the principal components of (16) are

(17)

Hence with the help of 1= !(A / +A/) and J = A,Az, we obtain

This shows that conditions (9) or (11) can be expressed as

(18)

The restrictions (18) are relevant to the discussion of the invertibility of the stress
deformation relation in the form (4) or (16), [5].

Expressed in terms of the principal stretches the invariants p and q are

We now define stress invariants, denoted by p and q, by

p = {(SII + szz)Z + (SIZ - SZI)Z}I/Z,}
q = {(SII - szz)Z +(SI2 + SZI)Z}I/Z.

In terms of the principal components of T these are

but, in contrast to p, p may be positive or negative.

(19)

(20)

(21)
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It is easily seen from (8), (13) and (20) that we can write

the signs being chosen so that (13) and (22) are compatible.
We now introduce the notation

109

(22)

A = Wp cos X,
C = Wq COSX*,

B = Wp sin X, }
D = Wq sinx*,

(23)

so that eqns (12) may be written in the compact form

Sll = A +C,
SZI = B +D,

It follows from (20), (23) and (24) that

S12= -B +D,}
Szz= A-C.

(24)

The connections

(25)

(26)

(27)

are now noted for future reference.
If s is given, the angles X and X* are determined from (26) and (27) only to within an integral

multiple of 7T except in the cases p =0, when X is indeterminate, and ij =0 for q f. 0, when x* is
indeterminate. In other words, with the exception of the cases mentioned above, there are two
possible polar decompositions of the form s = 'T X r T for a given 5 in plane strain, r being proper
orthogonal and 'T symmetric. Hence, in plane strain, a given 5 corresponds to (at least) two
distinct a's.

Since r is proper orthogonal

'TI'TZ =det ('T) = det (5), (28)

and so there are, correspondingly, two possible combinations of the signs of 7\ and 7z (associated
with two distinct branches of the inversion of (4». Hence the ambiguity in the sign of p. For a
fuller discussion of the invertibility of the relation s(a) the reader is referred to [5]. We remark in
passing that it is convenient here to set 'T) = S)).

From the definition of 'T it is seen that the scalar product 'TU can also be written as sa == S...iCfi...

(with summation over I.L and i from I to 2), and hence, by use of (12), (14), (15), (19) and (25), we
find

'Tu==sa =pWp +qWq =!(pp +qij).

We now define the complementary energy function W through

W+ W='TU,

(29)

(30)

bearing in mind (29). W is regarded as a function of 'T, depending on 'T only through p and q since
the material is isotropic, but it may also be regarded as a function of s through (20).
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The existence of W is assured where T(U) is locally invertible, that is where det (aTlau):j:. o.
This condition certainly holds within some domain of u-space enclosing the origin (the
undeformed configuration) since aTlau is positive definite there [5]. And, as discussed in [5], this
domain extends at least to values of u associated with elastic failure, and positive definiteness
of aTIau can therefore be regarded as a constitutive assumption in respect of the elastic response
of solids. Furthermore, the domain can be taken to be sufficiently extensive so as to ensure global
convexity of T(U) in the domain of elastic response. This means that T(U) is globally invertible
within the elastic domain [5, 6].

In view of the above remarks we deduce that W exists, as does the inversion

aw
u=-

aT (31)

within the elastic domain. Moreover, the inversion (31) is unique. This does not, however, rule
out the possibility of the existence of more than one solution to a given boundary-value problem.
Nor does it rule out the possibility of buckling and certain types of instability. In practice, when
considering the solution of actual boundary-value problems, some criterion of rupture or yield
may be needed in order to determine whether or not the T'S associated with a given s are within
the elastic domain. Which T is the relevant one in a given problem will usually be clear from the
context.

In terms of principal components (31) reduces to

(32)

or, in terms of invariants,

(33)

from (25), (29) and (30), these being the inverse of (25).
Now, for isotropic elastic solids in plane strain aTlau is positive definite if and only if

(a) aT; 1aA j is positive definite (i, j = 1or 2)

and

as discussed more generally by Ogden[5].
From (17) expressed in terms of p and q it is easily shown that (35) becomes

(34)

(35)

(36)

with equality if and only if AI == A2 • Hence the definition (21)2 of q as a positive quantity, in the
light of (25h, On the other hand W" ==!jj = !(TI + 1'2) may be either positive or negative, since (34)
puts a restriction on the second derivatives of W, namely W"" Wqq - W~q > O.

Since X and X* are determined (to within an integral multiple of 1T) by (26) and (27)
respectively when s is given, the inverse constitutive law can be written as

aw
a=

as'
(37)

(at least two distinct a's corresponding to a given s in the global sense) providedfirst/y that aT lau
is non-singular (as is certainly the case within the domain where it is positive definite) and
secondly that

W" =~jj =!(TI + T2):j:. 0,

a requirement previously noted in (18).

(38)
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With the help of (20) and (22), (31) can be written as

1Il

(39)

This may be compared with (12). It is the decoupling of the relations between invariants, as
expressed by (25) and (33), which is the particular feature here enabling the inverse to be written in
the form (39). We recall, however, that X and X· are known only to within an integral multiple of
'IT when s is given. When s is given the sign of p is ambiguous and this fact is reft.ected in the
values of WI' and Wi! since there are two distinct branches of Wwhen it is viewed as a function
of s.

From (33) and the definitions of p and q we have

with equality if and only if q == O.
From (13), (23), (25) and (33) we obtain

all+aZ2==4A!I'/~,atZ-a2t =4Bl!jJ/~,}
att-an==4CWijlq,alz+au =4DWijlq,

(40)

(41)

provided p¥: O.
The right-hand sides of eqns (41) depend only on A, B, C and D. When these are known and

when IV can be calculated, the components of a are given by (41) and they must satisfy the
compatibility relations (6).

By introducing the notation

we can rewrite (41) as

au= 2(PA +QC). alZ == 2(PB +QD), }
a2t == 2(-PB + QD), an =: 2(PA - QC).

(42)

(43)

The basic problem expressed by eqns (5) and (6) is now replaced by four first-order partial
differential equations in A, B, C and D; thus

(A +C).l+(B +Dh==O,}
(-B +D).t+(A -Ch==O,

(PA +QC),z - (PB + QD).t == O,}
(-PB +QD),z-(PA -QC)'. =0.

(44)

(45)

There are two possibilities for the sign of p for a given s and hence for the sign of P. We recall
that P and Q are known functions of A, B, C and D from (25) and (42).

If the boundary of the plane region occupied by the material is the curve I in the undeformed
configuration and the unit tangent to I is (cos "', sin",), then the components (t.. tz) of traction
per unit area are given by

n I and nz being the components of the unit normal to I.
The functions A, B, C and D must be consistent with the traction boundary conditions on I,

and the solution of (43) for x I and Xz should satisfy the boundary conditions of place on the
relevant part of I.

58 Vol. 13. No. Z-{;
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The equilibrium eqns (5) can be satisfied identically if stress functions hI and hz are
introduced such that

Then, from (24) we have

and we note that

2A : hu +hz.z, 2B ~ hl,z - hz.1. }
2C - h z.z- h 1.1. 2D - -h \.2- h z."

2(A. 1 + B.z): -2(C.I + D.z): 'iJ:h,,}
2(A.z- B.I) - 2(C.z- D. I ) - 'iJ hz,

(47)

(48)

where 'iJz == a2/ax 1
z+ aZ/ax/.

For a given form of W the problem may now be reduced to finding two functions h I and hz
satisfying the compatibility conditions (45) and consistent with the traction boundary conditions.
Alternatively, assumptions can be made about hI and hz, XI and Xz then being found by
integrating (43).

So far no assumptions have been made about the functions h" hz, and hence A, B, C and D,
and no restriction has been put on the form of W, although it is understood that its form is such
that the definition of W is meaningful. It is possible, however, to make assumptions about hI and
hz so that all the conditions of the considered problem are satisfied for particular classes of
strain-energy functions W, thereby allowing explicit analytic solutions to be obtained. This is
illustrated in Sections 4, 5 and 6 where hI and hz are assumed to be harmonic functions. This
follows the parallel formulation of the dual problem in Section 3.

It is emphasised that the choice of hI and hz as harmonic functions is just one of many
possible assumptions and is used here merely as an illustration of the general approach. Other
choices, leading to different classes of W, are considered elsewhere, as also is the more direct
approach in which no assumptions are made and the non-linear eqns (45) are solved for specific
boundary-value problems. In fact we have obtained a more concise and simpler formulation of
the basic equations in terms of complex variables. It has been used to obtain solutions for a
number of boundary-value problems and the results will be reported in subsequent papers. In
principle the results are obtainable for arbitrary forms of W, but in practice analytic solutions can
be given in closed form only for relatively simple forms of W.

In the special case in which jj = 0 the angle X is undetermined by s since the relation (26) is no
longer valid. However, the inverse (39) can still be used provided X is regarded as arbitrary.
Since, in this case, A = B =0 we must replace 2PA and 2PB respectively by W~ cos X and
W~ sin X in (45). Equations (45), together with the boundary conditions then serve to determine x·

From (47) we can then introduce the potential l/J with 'iJ2l/J = 0 and such that

Then W~ and W4 depend only on q = (C Z+DZ)llz. The problem is now reduced to finding the
harmonic function l/J, together with X from (45), consistent with the boundary conditions. The
solution may not be unique.

3. THE DUAL FORMULATION

An alternative approach to that described in Section 2 is to begin by writing the components
of the deformation gradient in the form

where, bearing in mind (39),

all = ~ +~, aZI = -=.B +JJ,}
a 12 = B + D, a2Z = A - C,

~ = ~~ cos x' i!. 0:= ~~ sin X, }
C = W4 cosx*,D 0:= Wq sinX*.

(49)

(50)
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Also, we have

113

(51)

From the compatibility equations, which are satisfied identically, we have, by analogy with
(47),

2A =XI,I+X2,2,2B =XI,2-X2,h}
2C = x 1,1 - X 2,2, 2D = x 1,2 +X 2,10

(52)

where the functions XI and X2 are determined through the equilibrium equations (this is the
conventional direct approach), and satisfy the boundary conditions of place on I.

The components of nominal stress are obtained from (12), with (50) and (51), in terms of A, B,
C and D. Thus

Sll =2(~~ +gt;), Sl2 =2(__~B +_qD),}
S21 = 2(PB +QD), S22 = 2(PA - QC),

where the notation

has been introduced. In this notation the equilibrium equations are

(PA + QC).I + (PB + QD).2 = 0,
(-PB + QD),I +(PA - QC).2 = 0.

(53)

(54)

(55)

As an alternative to determining x I and X2 directly from (55) with (52) (a formidable problem in
general) it is possible to make assumptions about XI and X2 (analogously to those for hI and h2in
Section 2) and then (55) act as compatibility equations, possibly restricting the form of W which
occurs through P and Q.

The dual approach described here has the practical advantage that its validity is unrestricted
and, moreover, it does not require a knowledge of the complementary-energy function W, as is
required in Section 2. Nevertheless it is the method of Section 2 which is used for illustration in
this paper.

Finally, in this section, we note that

analogously to (48).

2(~,1 +~.2) =2(C.!.-+ D,2] =V:Xh}
2(A.2- B.I) = -2(C.2- D.I) = V X2, (56)

4. CONSEQUENCES OF THE ASSUMPTION THAT THE STRESS FUNCTIONS ARE HARMONIC

4.1 Two special classes of strain -energy functions
We now assume that hI and h2are harmonic, the motivation for this being eqns (48), so that

A,I +B.2= 0, -B. I +A.2= 0,
C. I +D.2 =0, -D. I +C.2 =0.

Thus (A, B) and (C, D) are conjugate harmonic pairs of functions, and we can write

where

(57)

(58)

(59)
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Moreover, we note that a consequence of (57) is that X and X* are harmonic, as may be
demonstrated by using (26) and (27).

With the help of (57) it can be shown that the compatibility eqns (45) can be written as

VP,V4> - VQ·V4>* = O,}
VP 1\ V4> +VQ1\ V4> *= 0,

(60)

(or similarly in terms of r/I and r/I*) in the usual notation for scalar and vector products of two
vectors, V representing the (plane) vector operator with components a/ax.. a/ax2•

The components of traction t 1 and t2 on I can be written

where m is the unit tangent to I measured in the positive sense. Specification of the traction on I
can therefore be regarded as equivalent to specifying r/I + r/I*and 4> *- 4> which, incidentally, are
just the stress functions h2 and -hI respectively.

The quantities P and Q appearing in (60) and given by (25) are both functions of IV4>! and
IV 4> *1 in view of (58). In general, the conditions (60) are incompatible with 4> and 4> * being
harmonic. This, of course, reflects the fact that we are making assumptions about h I and h2 ,

indicating that there do not exist (in general) solutions of the assumed type. In certain
circumstances, however, eqns (60) are entirely consistent with 4> and 4>* being harmonic. A
trivial case in which this is so is when p and q (and hence p, ij, X and x*) are constant, and the
deformation is homogeneous. It may be recalled that any homogeneous deformation can be
maintained in an elastic solid by the application of suitable surface tractions.

We now consider two particular classes of strain~energy function for which (60) can be
satisfied in non~trivial situations.

Class I. This class of materials has strain-energy function given by

(61)

when /.L is a constant and f is some function whose behaviour need not be specified at this point
except that it should be twice continuously differentiable. When rearranged in the form

(62)

this is recognizable as the class of harmonic materials introduced by John [4]. John's approach to
the problem, however, is somewhat different than that considered here, and comparisons
between these approaches for this particular class of materials are discussed in Section 5.

From (61), with the help of (25), (33) and (42), we find

Q = ~q= 4~'

and hence VQ = 0. The consequence of (60) is then that

VP=o,

provided V4> l' O. It follows that either p is constant, or W has the form

(63)

However, this particular form of W is not consistent with the usual linear theory for infinitesimal
deformations unless the material is prestressed by an all-round hydrostatic stress. To comply
with the linear theory the function f(p) in (61) must be such that

f(2) = 0, /,(2):::: 0,1"(2) = A+ /.L, (64)
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where A and f.£ are the Lame constants and where f' (p ) =dfldp. The semi-linear material t with
strain energy

satisfies the condition (64).
For any member of the class (61) consistent with (64) we have (63), which gives

p = constant,

(65)

(66)

thus restricting the type of solution possible under our assumptions. This does not mean, of
course, that p must always be constant for materials of type (61). It merely indicates that our
assumption of hi and h2 being harmonic functions is only appropriate for those deformations for
which p happens to be constant. Other choices of hI and h2 will lead to different restrictions, if
any, on p and q and therefore provide solutions to problems involving different types of

deformation.
In passing we remark that the inequalities f.£ > 0 and r(p) > 0 are necessary and sufficient for

(34) and (35) to hold in respect of this material.
Class II. We now consider the class of materials with strain-energy functions of the form

(67)

where 1/ is a constant and g(q) satisfies the conditions

g(O) = g'(O) = 0, g"(O) = f.£ - 1/,

where f.£ is the classical shear modulus.
For these materials VP = 0, the compatibility equations yield VQ = 0 for a non-trivial solution

and, provided g(q) is not of the form !(f.£ - 1/)q2, we deduce that

q = constant. (68)

This class of materials, however, is of only marginal interest since the material is subject to a
hydrostatic pre-stress of amount 21/, and, furthermore, when reduced to the linear theory it is
found that the Lame constants are such that A+ f.£ = O.

For future reference we write (67) in the form

(69)

We note that the inequalities TJ > 0, g"(q) > 0 and g'(q) ~ 0 (with equality if and only if q = 0) are
necessary and sufficient for (34) and (35) to hold for class II materials.

We have seen, therefore, that for two classes of materials we can obtain solutions to problems
in which invariant p or q is constant. If different initial assumptions are made about hi and h2 we
can expect to obtain solutions for other classes of strain-energy functions than those considered
above. For example, a relationship between p and q may be imposed. On the other hand different
solutions for the materials in classes I and II may be obtained by making different assumptions
about h I and h2 which do not impose restrictions on the invariants. For example, by rearranging
the terms occurring in Win (61) or (67) it is possible to obtain such solutions, and, in principle,
one can obtain solutions to any boundary-value problem for these materials. This is the basis of
John's approach[4] when W has the form which is essentially (62). This is discussed further in
Section 5.

Ideally, one would prefer not to have to make assumptions about hi and h2, but keep them as
general as possible for any given constitutive law. If the class I materials are considered, for
example, it can be shown that the compatibility eqns (45) are expressible in the form

tThis special material has been discussed in detail by. for example. Sensenig[7, 8).
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with the help of (47) and (48). Such a general approach may be amenable to analysis for certain
types of problem, but will be pursued elsewhere.

4.2 Circular symmetry
We can retain W in its most general form as a function of p and q and consider the resulting

equations for the case of a circular cylindrical deformation. This throws some light on what forms
of W can be admitted under the assumptions of harmonic hI and h2.

In the case of circular symmetry the deformation gradient is symmetric and, from (26), we
deduce that X = O. It follows from (23) that B = 0 and hence, from (57), that A is constant.

Thus, from (25) and (58),

!p = Wp (p, q) = A =constant, }
!ii = Wq(p, q) = (C 2 +D 2

)1/2 = IV4>*I, (70)

where 4> * is harmonic.
Also, from (15), X* = 28, where 8 is the polar angle measured from the Xl-axis, and therefore

D = C tan 28

from (27). Equation (7% then gives

CR 2

!ii == C sec 28 = X/- X/'

where R = (X,2+X/)1/2.

Because of the symmetry ii must be a function of R only. We therefore deduce, since 4>* is
harmonic, that

where a and f3 are constants. However, since the traction must be radial, it can be shown that we
must have f3 = 0, so that

and the components of nominal stress are given by

independently of the form of W.
Since

and

Q= W4 = qR
2

ii 4a

the compatibility eqns (45) (after some analysis, or more directly, starting from (39» become

where p' = dp IdR.

p'- q' -~ == 0, (71)
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Only those forms of W compatible with (71) and with

W,,(P, q) = A, W,,(P, q) = OllR 2

are admissible under the assumption of harmonic hI and h2•

No attempt will be made here to list those forms of W for which (71) and (72) hold.
For materials in class I

q = /L~2'P = (f'}-I(A)
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(72)

where (f'}-I is the inverse function of f, which is assumed to exist. (This assumption is justified in
Section 7). The deformation can be written

where

r = {l +!(f'}-I(A )}R - 2:R (73)

We deduce from (73), in particular, that for a solid circular cylinder the deformation is necessarily
homogeneous (a = 0), a result analogous to that known in the linear theory.

For class II materials (72) gives

A '() ap =;;,g q = R 2

but these are incompatible with (71) except in the trivial case g'(q) = (/L - T/)q. Therefore, the
assumptions of harmonic hI and h2 are not appropriate for circular symmetric deformations in
class II materials.

It is not intended that too much emphasis should be put on the specific choice of harmonic
functions in this paper. The choice is made here merely to illustrate the possibilities afforded by
the more general approach in Sections 2 or 3.

5. COMPARISON WITH JOHN'S FORMULATION

John [4] considered plane strain problems for materials with a strain-energy function which, in
the present notation, may be written as (61) or as

W = F(p) - 21Lf,

where J is given by (1).
Use of (3), (10) and (13) enables us to write the components of s as

Sll = F'(P) cos X - 2/LOl22, S21 = F'(P) sin X +2/LOl2l,
Sl2 =- F'(P) sin X +2/LOlI2, S22 =F'(P) cos X- 2/Lall.

If we write

A = F'(p) cos x, B = F'(p) sin X,

(74)

(75)

(these being different from the A and B used earlier) the equilibrium equations reduce to

A,I + B.2 =0,A.2 - B.I = 0 (76)

on the assumption that the components of Ot satisfy the compatibility eqns (6). Then, the
functions A and B are automatically conjugate harmonics.
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The components of XI and X2 are then found from the eqns (75) expressed, with the help of
(13), in the form

where

X 1,1 +X2.2 =: pA!(A 2 +B 2)1/2,

X 1.2 - X 2.l =: pB!(A 2 +B 2
)1/2,

(77)

It is therefore F'(p) cos X and F'(p) sin X which are conjugate harmonics in John's method,
whereas {F'(P) - ,."p} cos X and {F'(P) -,."p} sin X are the (assumed) conjugate harmonics in the
approach of Section 4.

We note that the components XI and X2 can be expressed, quite generally, in the form

(78)

where ¢ and", are scalar functions. The solution of eqns (77) is then reduced to the solution of
two Poisson equations, namely

(79)

It should be pointed out here that John's method, as it should, gives the same solution to the
circular symmetric problem as the method described in Section 4.2. It turns out that p is constant.
That p is constant is not immediately obvious from John's method, and in this respect the method
of Section 4 has aD advantage over that of John for the class I materials. However, for these
materials John's method is more general and deserves to have received more attention than it has
up to the present. On the other hand the approach of Sections 2 and 3 offers scope for the solution
of problems in plane-strain finite elasticity for wider classes of strain-energy function.

6. THE CIRCULAR SHEAR PROBLEM

From (46) the components of traction on the boundary I can be expressed in the complex
form

(80)

per unit area in the undeformed configuration.
The components XI and X2 are obtained by integrating the eqns (43) which, for the class I

materials (61) to which attention is now restricted, are expressible as

From (25) we have

all =: 2PA + C/2,.", al2 == 2PB +D!2,.",
a21 =: -2PB +D!2,.", an =: 2PA - C/2,.".

(81)

and, according to the method of Section 4, p is constant. Hence, by means of (57) it follows that
X, A and B are constant. With the help of (58), the integral of (81) can be expressed in the form

where

i =: 2P(A + iB)l +htJ(C)!,." +constant,

w(O == 4>* + i"'*

(82)



Towards the solution of finite plane-strain problems for compressible elastic solids

is an analytic function of , = XI + iX2 :::: Re ie, and

C-iD=:~.

Also ( = X I - iX2 and z = XI +£X2 = rei.
Since the components XI and X2 are single valued w(n can be written
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(83)

(84)

where the ali's are constants.
We now consider an elastic solid contained in the annular region a s R s b in the

underformed configuration, so that on any circle concentric with the annulus nl + in2 :::: ele
•

In polar coordinates (R, 8) in the undeformed configuration the components of tractions tR

and te on a circle of radius R are given by

(85)

We now suppose that the inner surface R =a is held fixed while traction te :::: 5 is applied to
R :::: b. The boundary conditions are therefore

i= ( on R =a, 1
tR - ite =-i5 on R = bJ

Substitution of (82), (83) and (84) into (86) yields

w:::: ao +a-Ir\ C- iD = -a_I,-2,l
i= 2P(A + iB)(+a_lr l/2p" J

(86)

(87)

the constant term in i having been set to zero since it corresponds to a rigid displacement. Also
we have

(88)

Equations (88) are enough to determine A and B when 5 is given since

(89)

The deformation can be described in the form

(90)

(91)

The form of solution can be simplified if one applies, in addition to the shear stress 5, a radial
stress tR on R :::: b which happens to equal the value of A (which is initially undetermined). Then

and (90) and (91) are replaced by

(92)
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a.(1 I)tan(8-8)=- ---
2/-L aZ RZ

'
(93)

It is worth noting from (92) in particular that r ~ R with equality holding only on R = a. Thus,
the effect of the circular shear combined with a radial stress tR = A is to increase the volume of
the material. Whether the volume increases or decreases when tR = 0 on R = b depends on the
particular form of f(p) and may be assessed by determining whether r(b) > b or <b from (90)
with (88) and (89).

Calculations for particular forms of f(p) are presented in Section 7.
For comparison we note that the corresponding results for the linear theory are expressible in

the form

where Ur and U9 are the displacement components in polar coordinates, and the components of
Cauchy stress are

We remark that the deformation is necessarily isochoric under these boundary conditions.
It is worth noting that, under the assumptions of harmonic hI and hz the condition r = R

cannot be imposed since this would imply a trivial solution a_I = 0, A = B = C = D = O. Thus, a
volume preserving solution is not obtainable under the assumptions of the present method, that is
an isochoric deformation is not compatible with p = constant other than in the trivial situation.

If John's method is used the same results are obtained and eqns (77) may be integrated
immediately if the assumption of constant p is made. Without this assumption, however, the
analysis is not so straightforward.

7. INEQUALITIES, NUMERICAL RESULTS AND DISCUSSION

In order to illustrate the results of Section 6, in particular eqns (90) and (91), we choose the
following form of f(p):

(94)

so that

(95)

where II is a constant. This form is consistent with (64) and, moreover, satisfies the condition

f"(p) > 0

if ,\ + /-L > 0 and p > 0, which we assume to be the case. When these inequalities hold it follows
that

f'(p) ~ 0 according as p ~ 2,

ensuring that (plane) hydrostatic stress is positive (negative) 10 tension (compression).
Invertibility of f'(P) is also a consequence of these inequalities.

It is not proposed to discuss inequalities in detail here, althoUgh more could be said about
restrictions required on f and its derivatives to ensure physically reasonable response. In some
respects, therefore, (94) may be unrealistic. However, it serves to illustrate the theory for the
moderate range of strains to be considered in this Section.
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For the purposes of carrying out numerical calculations the following non-dimensional
quantities are defined:

A*= Alp., v* = vlp.,/* = f1p., A* =Alp., B*:: Blp.,

y* =(A *2+ B*2)1/2, P* = p.P, S* =SIp., R* =RIa,

7'/=b 2Ia 2.

The range of values of R* is from I to 7'/1/2.

After some algebra (88) and (89) can now be written as

(96)

and

The quantity y * is then determined from the equation

y* = /*'(P),

where P = (11 2S*2+4)1/2-7'/y*, for given 11 and S*.
A *, B* and p* are then calculated from (96) and (97).
In non-dimensional notation (90) and (91) become

and

(97)

(98)

(99)

Calculations have been carried out for bla = 2 and 4 (11 = 4 and 16) and for the range of S*
from 0 to 1.5 in steps of 0.1. Values A*=0.1 and v* =24 of the material constants have been
chosen to illustrate the character of the results. Within the limitations of the form (94) other
choices of A* and v* are equally acceptable, the main features of the results not depending on
their values.

Figure I shows ,2R-2as a function of R* for the case 11 =16 and for S* =0.1, 0.3, 0.5 and 1.0.
Physically ,2R-2is a measure (per unit length perpendicular to the (I, 2)-plane) of the change in
volume of the material enclosed within the circle R =constant. Notice, in particular, that near
R = a (R *= I), where the boundary is fixed, there is a marked volume decrease.

1.4

1.2

N
I

1.0Q::
N ....

0.8

0.6

Fig. I. Plot of ,2R-2against R* for 1/ = 16.
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5'=0.5
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60·

@
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5'=0.1

30

R'

Fig. 2. Plot of IJ - 8 against R* for I) = 16.

This result is in fact independent of the form of f(p) since

4.0

at R* = I. Moreover, ,2R-2 has a minimum value where

The above behaviour is, of course, characteristic of r 2R-2being quadratic in R*-2, and the above
value of R* lies in the range 1< R* < 7/112 if 4P*2S*2(7/ -1) > 4P* + I.

One can also test whether the volume as a whole increases or decreases by determining if
r 2R-2 = 1 has a solution for R* in the range 1 to 7/ 1/2. If it has the volume increases; if not, the
volume decreases. The result depends on the form of f(p), on 1/ and on S*. In the former case
there is, for any S*, a material circle whose radius equals its radius in the undeformed
configuration.

In Fig. 1 the values chosen indicate an overall increase in volume, but an overall decrease in
volume is not ruled out for other values. Indeed, for the same values of A* and v*, but for 7/ = 4,
our calculations show that there is an overall volume decrease for values of S* less than about
0.5.

The actual magnitudes of the volume changes are up to 30%. This reflects the fact that no
attempt has been made to find values of A* and v*, or, indeed, forms of f(p), which are
appropriate for any specific type of material. However, the shape of the curves is expected to be
of the general character shown in Fig. 1for materials such as rubber-like solids for which volume
changes are of the order of 10-3 of those shown.

In Fig. 2 curves of 8 - e as a function of R* are plotted for S* = 0.1,0.3,0.5 and 1.0. They
illustrate how the shearing is largest at R = a, decreasing monotonically with increasing R. This
behaviour is to be expected in view of the fact that R = a is a fixed boundary. The association of
large shearing with decrease of radius near R = a could also be anticipated.

From (85), (87) and (88) we obtain

and
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when S* > O. Note, in particular, that tl is compressive, and near R* = 1 is large, being
associated with the decrease in radius of material circles in that neighbourhood. Nearer to R* = 4
the effect of the compressive radial stress is subordinate to the effect of the shear stress, resulting
in volume expansion.

It is interesting to obtain an estimate of the magnitudes of the stresses at the inner boundary
of the annulus. Using the results for 1/ = 16 we consider just one value of S*, namely 0.1. At
R*= 1 we obtain t1= -0.37, t ~ = 1.2. It is noteworthy that the shear stress has increased to
twelve times its value at R*= 4.

The values of the associated principal stretches may also be estimated. If we take A. ~ ,h
then

A. =!(p +q), A2 =!(p - q),

where p and q are given by

For S* =0.1 we find that A. has its maximum of approximately 1.7 at R* = 1 decreasing
monotonically to =1.06 at R* = 4, whereas A2 increases monotonically from =0.36 at R* = 1 to
=0.98 at R* = 4.

For higher values of S* our calculations show that A2 can be negative and zero near R* = 1,
which is physically unrealistic. This is a consequence of the particular form we have chosen for
f(p). To avoid this type of inconsistency further restrictions must be put on the form of f(P).

Indeed, the inequality

f'(p) < /LP (101)

must be satisfied in order that there is a positive value of A2 associated with an arbitrary A. > 1 in
pure shear. In different notation this condition was noted by John[4] for pure shear.

For the present f(P) the range of validity of (101) can be extended to higher values of A. by
reducing the value of v*. Moreover, for the circular shear problem, positive values of A2 will
emerge for higher values of S* when v* is reduced.

Full discussion of (101) and other inequalities, along with consideration of other particular
forms of f(p) in relation to these inequalities and to data on actual material behaviour, is
deferred.

Finally, we have one reservation concerning the form of constitutive law given by (61) in
relation to eqn (91). As S* increases from zero to infinity tan (8 - 8) (evaluated for R = b) does
likewise; it cannot be negative. Therefore, 8 - e increases from zero asymptotically to hr. Thus,
the constitutive law (61) puts an upper limit on the angle through which material points can turn.
This is unrealistic and in this sense a limitation is put on the range of deformations for which (61)
can be used. For practical purposes, however, the range of validity is likely to be sufficient.
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